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Abstract

Discontinuous Galerkin methods are excellent tools for allowing high-
order accuracy solutions of both linear and non-linear PDEs, including
those with non-smooth solutions. This paper presents an introduction to
the theory and application specifics necessary to apply DG to 1D conser-
vation laws.

1 Introduction

A 1D scalar conservation law can be described by a PDE of the form

∂u

∂t
+
∂f(u)

∂x
= 0 (1)

where u(x, t) is a conserved quantity of interest and f(u) is a flux function that
describes the flow of the conserved quantity. f(u) could be a non-linear function
of u in which case there may not exist an analytical solution to (1). Indeed,
the solution may be non-smooth and so a traditional Finite Element Method
(FEM) approach will encounter difficulties capturing any discontinuities in the
solution.

A Finite Volume Method (FVM) is able to handle discontinuous solutions,
however difficulty exists in extending it to high-order accuracy on unstructured
grids due to the necessary extended computational stencil. A Finite Difference
Method (FDM) does not enforce conservation and also is difficult to implement
on unstructured grids.

Discontinuous Galerkin (DG) allows for high-order accuracy on unstructured
grids while accommodating non-smooth solutions. The DG method will be
derived for 1D conservation laws and we will go into the specifics necessary for
implementation.
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2 DG Formulation

2.1 Weak Formulation

If we imagine some arbitrary test function φ(x) we should expect that our choice
has no effect on our ability to solve (1) as the two have nothing to do with each
other. To be more precise we should expect that the two are orthogonal, that
is the inner product of the two is zero on some interval [a, b]

(f, g) =

∫ b

a

f(x)g(x) dx = 0 (2)

Enforcing this expectation on (1) over a (yet) ambiguous domain yields∫
∂u

∂t
φdx+

∫
∂f(u)

∂x
φdx = 0 (3)

In contrast to the FEM, the domain is broken into K independent elements
each with a domain Ik = [xk−1/2

, xk+1/2
]. Instead of placing a global orthogo-

nality requirement, we require local orthogonality on each element∫
Ik

∂u

∂t
φdx+

∫
Ik

∂f(u)

∂x
φ dx = 0 (4)

One downside of the current form of (4) is that we must place certain smooth-

ness requirements on the flux function to ensure ∂f(u)
∂x is defined. We can re-

lax these requirements by integrating the right term of (4) by parts (recall:∫
uv′ dx = uv| −

∫
u′v dx where we choose u = φ and v′ = ∂f(u)

∂x ).∫
Ik

∂u

∂t
φ dx+ [f(u)φ]

∣∣∣xk+1/2

xk−1/2

−
∫
Ik

f(u)
dφ

dx
dx = 0 (5)

2.2 Polynomial Approximation1

The exact solution u(x, t) may not permit an analytical representation and so
most be approximated in some way. An easy choice is a polynomial approxi-
mation of order M. A natural choice for the polynomial basis is the monomials,
ψm(x) = xm−1. These are satisfactory for low orders, but we encounter a prob-
lem at higher orders.

If we normalize the monomial basis with respect to the l2 norm ‖f‖ =√
(f, f) we arrive at ψ̄m(x) =

√
2m+ 1xm. If the inner product of two basis

functions is 0, they are orthogonal and therefore linearly independent. If many
of our basis functions end up linearly dependent it is difficult to reconstruct the
solution approximation.

1The slightly unusual notation of functions of order M is used throughout this section,
where more traditionally N is used. This is done to permit a consistency of notation for the
approximate solution that will be useful later on when N is used for another purpose.
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Consider the inner product of two adjacent basis functions in our normalized
monomial basis:

(ψ̄m−1, ψ̄m) =

∫ 1

0

√
2m− 1xm−1

√
2m+ 1xm dx =

√
1− 1

4m2
(6)

It is easy to see that for even moderate values of n in (6) the inner product is
close to 1, indicating near linear dependence between basis functions.

It is therefore important to choose a polynomial basis of (ideally) orthogonal
functions so that the solution approximation is well conditioned. One good
choice is the Legendre polynomials Pm which are orthogonal on the interval
[−1, 1] (these are defined as the solutions to the Sturm–Liouville equation for a
weighting function w(x) = 1). They can be defined using the recurrence formula
(7) or the explicit Rodrigue’s formula (8)

Pm(x) =
(2m− 1)xPm−1(x)− (m− 1)Pm−2(x)

m
(7)

Pm(x) =
1

2mm!

dm

dxm
[
(x2 − 1)m

]
(8)

Orthogonality means that the inner product of two Legendre polynomials is
zero if they are not of the same order, this can be expressed using the Kronecker
product as

(Pn, Pm) =

∫ 1

−1

PnPm dx = δnm

(
2

2m+ 1

)
(9)

Note that we could use a similar orthonormal version of the basis such that
every inner product is simply the Kronecker product, however one nice property
of the current form is that Pm(1) = 1 and Pm(−1) = (−1)m. In the orthonormal
case we would need to explicitly evaluate Pm(x) at the endpoints for every m
(it is important to be clear with what one means by normalization in this case:
orthonormal with respect to the l2 norm or normalized with respect to the
maximal value of Pm(x) on [−1, 1]).

The Legendre polynomials are orthogonal on the domain [−1, 1] however
we would like to use them on the domain of our element. We can define a
mapping that will transform the domain of the element to that of the Legendre

polynomials, x̃ =
2(x−xk−1/2

)

xk+1/2
−xk−1/2

− 1 to transform Ik to [−1, 1]. Using this we

can define a variant of the shifted Legendre polynomials such that P̃m(x) =
Pm(x̃(x)). The newly defined shifted Legendre polynomials are now orthogonal
over Ik where ∆x = xk+1/2

−xk−1/2
and the inner product found in (9) becomes

(P̃n, P̃m) =

∫ xk+1/2

xk−1/2

Pn(x̃(x))Pm(x̃(x)) dx = δnm

(
∆x

2m+ 1

)
(10)

Using our orthogonal Legendre polynomial basis we can now construct an

approximating solution v for arbitrary order M using basis functions
m

ψ(x) ∈ P̃m
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and basis weights
m
a(t)

v =

M∑
m=0

m
a(t)

m

ψ(x) (11)

Substituting (11), (5) takes on the form∫
Ik

∂v

∂t
φdx+ [f(v)φ]

∣∣∣xk+1/2

xk−1/2

−
∫
Ik

f(v)
dφ

dx
dx = 0 (12)

If we substitute (11) into (12) and bring outside the basis weights which do not
depend on the spatial integral we get:

M∑
m=0

[
d
m
a

dt

∫
Ik

m

ψ φdx

]
+ [f(v)φ]

∣∣∣xk+1/2

xk−1/2

−
∫
Ik

f(v)
dφ

dx
dx = 0 (13)

2.3 Flux Functions

Though the distinction between (3) and (4) may seem pedantic, it is impor-
tant to note that the locally defined form of (4) decouples the solution into K
equations. This improves the locallity of the solution (particularly important in
non-elliptic PDEs), but presents several challenges not present in FEM.

First, if (5) yields local equations independent of each other how do we
recover a global solution? Secondly, the solution is multiply defined at the
point where adjacent elements overlap (e.g. vk(xk+1/2

) and vk+1(xk−1/2
) ), what

is f(v) at these points?
Both questions are answered by replacing f(v) with a numerical flux func-

tion g(x) = g(v−(x), v+(x)) at the endpoints of each element, where we define
v−(x) = lim

c→0
v(x − c) and v+(x) = lim

c→0
v(x + c). Essentially v+(xk−1/2

) and

v−(xk+1/2
) x ∈ Ik correspond to the left and right values of vk(x) in a particu-

lar element k, respectively.
The classic approach to choosing a numerical flux function for a DG method

is to ensure that in the case of the 0th order DG method (which reduces to a
FVM approach) that it is in the class of monotonic flux functions (e.g. Lax-
Friedrich, Godunov, etc). In the case of a linear flux f(v) = cv (or more
generally in advection-dominated problems) a simple choice is the upwind flux
g(v−, v+) = cv− for c > 0.

2.4 Galerkin Approach

We have as yet left the definition of the test function φ(x) ambiguous. If we
choose to use the Galerkin approach then φn(x) ∈ P̃n and so therefore ψm(x) =
φn(x) if m = n. This is particularly useful when we consider the integral of
products of the approximate solution and the test function as these will be zero
everywhere except for when the two functions are the same order.
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Applying the Galerkin approach to the weak form in (13), and applying the
numerical flux at the endpoints yields

M∑
m=0

[
d
m
a

dt

∫
Ik

m

ψ
n

φ dx

]
+[g(v−, v+)

n

φ]
∣∣∣xk+1/2

xk−1/2

−
∫
Ik

f(v)
d
n

φ

dx
dx = 0 for 0 ≤ n ≤ N

(14)
applying the relationship found in (10) along with the relation for Pn(±1)

d
m=n
a

dt

(
∆x

2n+ 1

)
+ g(Σ

m
ak,Σ

m
ak+1(−1)m)− g(Σ

m
ak−1,Σ

m
ak(−1)m)(−1)m (15)

−
∫
Ik

f(v)
d
n

φ

dx
dx = 0 for 0 ≤ n ≤ N

2.5 Legendre Derivative Relations

Ideally we would like to analytically calculate all integrands to avoid the need
for numerical quadrature. The last remaining integrand is the last term in (15)
involving the product of the flux with the derivative of the test function. Let’s
start with finding a closed form expression for the derivative.

According to Quarteroni (1988) the derivative of a function can be repre-
sented using Legendre functions by

f ′(x) =

∞∑
b=0

f̂bLb(x)

f̂b = 2b+ 1

∞∑
p=b+1
p+bodd

f̂p

f̂p = (p+ 1/2)(f, Lp)

If we perform this series of operations on f =
n

φ(x) we can exploit orthogo-

nality to see that f̂p is only non-zero when p = n, and becomes 1 at this value
of p. Furthermore p can only equal n for values of b that are odd (if n is even)
and vice versa. We must also not forget to include the coefficient due to the
chain rule acting on the mapping variable x̃. If we permit slightly non-standard
notation for a sum in reverse order we can succinctly write

n

φ(x)′ =
2

∆x

0∑
b=n−1

by 2

(2b+ 1)
b

φ(x) (16)

This relation does not necessarily allow us to avoid the integral unless we
can say something more about the structure of f(v). If it has the structure of a
linear combination of Legendre functions that we can again exploit orthogonality
to analytically calculate the integrand. We shall examine this for the case of a
linear flux.
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2.6 Linear Case

For the simple case of a linear flux function f(v) = cv; Let us choose c = 1.
Substituting the relation found in (16) and the linearity of the flux function we
can again use orthogonality to simplify the integrand from (15).

∫
f(v)

d
n

φ

dx
dx =

∫ M∑
m=0

m
a(t)

m

ψ(x)
2

∆x

0∑
b=n−1

by 2

(2b+ 1)
b

φ(x) dx

=
2

∆x

M∑
m=0

m
a

0∑
b=n−1

by 2

(2b+ 1)

∫
m

ψ
b

φ dx

 = 2

0∑
m=n−1

by 2

m
a

(17)

The integrand in (17) is non-zero of course when b = m, which occurs for all odd
or even m < n− 1 for even or odd n; the inner product for the shifted Legendre
polynomials found in (10) cancels both the order dependent (2b + 1) and 1

∆x
terms on the outside of the sum. The resulting integrand is quite simple.

If we choose to use a upwind numerical flux we can further simplify the
evaluation at the element boundaries. Additionally, applying the relation found
in (17) we arrive at the following very simple expression:

d
m=n
a

dt
=

2n+ 1

∆x

2

0∑
m=n−1

by 2

m
ak −

M∑
m=0

[
m
ak −

m
ak−1(−1)m

] for 0 ≤ n ≤ N

(18)
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