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Finite Differences and Convergence

@ Consider 1D and 2D eliptic finite difference methods:
© Do these methods converge to a single answer?
© s this convergence guaranteed?
© Can we say anything about the error?
@ Consider the 1D Laplace equation example, we can analytically
compute the exact answer.
o Let's write the analytical solution below:
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Analysis of Finite Difference Methods

Finite Differences and Convergence

@ We will compute the difference between the analytical solution and
the numerically computed solution
e At specific points in the domain (individual points, because this is
where the solution is being determined).
o Number of nodes = (n+ 1)
o Let's examine the co-norm of the error
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Finite Differences and Convergence

@ The parameters for the error are:

o error = ||u— Ul|oc =~ CAX*?
e U is the numerical approximation to the solution
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General Convergence Analysis — Elliptic Equations

@ There are two fundamental conditions for convergence:

© Consistency : (elliptical problem) A numerical approximation is
consistent if, for all smooth solutions, the numerical approximation @
tends toward the theoretical answer u.

@ Stability : (elliptical problem) Stability implies a numerical
approximation that does not amplify error or perturbations in the RHS.

@ So, convergence = stability + consistency

@ Let's look at each component in a bit more depth.
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Consistency

@ Consider a PDE that is written as:
Lu=f

@ Consistency examines the difference between the numerical
approximation and the actual solution:

(Zu - ?) —(Lu—f);, = Order(Ax") 0
J

o forall j=1,2,3,....,nas Ax — Q.

e “indicates the numerical approximation
o p here is the order of accuracy
e u is an arbitrary exact solution to the system
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Consistency

@ The equation can be simplified to give some insight into the
truncation error, 7 (recall we truncated the Taylor Series):

(Lu—7) ~(u=1), =5 (3)
J T
DiscreteOperator B
@ The goal is to have 7 — 0 as Ax — O:
(Zu) = 7+ f (4)
but, f = (Zﬁ) , hence, (5)
(Zu) = 7+1d (6)

lu-8)] = (Ze):r (7)
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Consistency

@ There is a direct link between the T.S. truncation error 7 and the

solution error e:
(Le) =7 (8)

o Taylor-Series — truncation error "rate” (eg: O(Ax?)).
e GOAL: Find e = A7 to see the magnitude of error in discretization.

o ie. How well A~1 is behaved will dictate error magnitude.
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Stability

@ Stability: If the solution perturbations do not grow as a function of
Ax then the numerical scheme is stable.

@ This can be written mathematically as:

lu = f
u = Z—l?
LY < C

@ C: Is a constant that is independent of Ax
@ Stability — matrix is not magnifying the RHS as we change Ax

e It turns out that (see MIT notes, pg 17 Lec 2&3), ||L71||o is simply
the max row sum of L=1.
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Stability: Example

o Let’s look at A™! for the string problem. What is the maximum row
sum for different numbers of nodes?
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Convergence — Page 18 MIT notes

@ This is a neat result, now that we know more about stability and
consistency:

~

e = L7 (10)
leloo = L7 oo (11)
= L MoolIlloo (12)
< C- AxP (13)

~ =~

Stability Consistency

@ You can also use eigenvalue analysis to examine convergence of
elliptic systems. This is not covered in this course.
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