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Analysis of Finite Difference Methods

Finite Differences and Convergence

Consider 1D and 2D eliptic finite difference methods:
1 Do these methods converge to a single answer?
2 Is this convergence guaranteed?
3 Can we say anything about the error?

Consider the 1D Laplace equation example, we can analytically
compute the exact answer.
Let’s write the analytical solution below:
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Analysis of Finite Difference Methods

Finite Differences and Convergence

We will compute the difference between the analytical solution and
the numerically computed solution

At specific points in the domain (individual points, because this is
where the solution is being determined).
Number of nodes = (n + 1)
Let’s examine the ∞-norm of the error
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Analysis of Finite Difference Methods

Finite Differences and Convergence

The parameters for the error are:
error = ‖u − û‖∞ ' C ∆xα?
û is the numerical approximation to the solution
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Convergence Analysis

General Convergence Analysis – Elliptic Equations

There are two fundamental conditions for convergence:
1 Consistency : (elliptical problem) A numerical approximation is

consistent if, for all smooth solutions, the numerical approximation û
tends toward the theoretical answer u.

2 Stability : (elliptical problem) Stability implies a numerical
approximation that does not amplify error or perturbations in the RHS.

So, convergence = stability + consistency

Let’s look at each component in a bit more depth.
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Convergence Analysis

Consistency

Consider a PDE that is written as:

Lu = f (1)

Consistency examines the difference between the numerical
approximation and the actual solution:(

L̂u − f̂
)
j
− (Lu − f )j = Order(∆xp)→ 0 (2)

for all j = 1, 2, 3, ..., n as ∆x → 0.

·̂ indicates the numerical approximation
p here is the order of accuracy
u is an arbitrary exact solution to the system
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Convergence Analysis

Consistency

The equation can be simplified to give some insight into the
truncation error, τ (recall we truncated the Taylor Series):(

L̂u − f̂
)
j︸ ︷︷ ︸

DiscreteOperator

− (Lu − f )j︸ ︷︷ ︸
=0

= τj (3)

The goal is to have τ → 0 as ∆x → 0:(
L̂u
)

= τ + f̂ (4)

but, f̂ =
(

L̂û
)
, hence, (5)(

L̂u
)

= τ + L̂û (6)L̂(u − û︸ ︷︷ ︸
e

)

 =
(

L̂e
)

= τ (7)
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Convergence Analysis

Consistency

There is a direct link between the T.S. truncation error τ and the
solution error e: (

L̂e
)

= τ (8)

Taylor-Series → truncation error ”rate” (eg: O(∆x2)).
GOAL: Find e = A−1τ to see the magnitude of error in discretization.

ie. How well A−1 is behaved will dictate error magnitude.
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Convergence Analysis

Stability

Stability: If the solution perturbations do not grow as a function of
∆x then the numerical scheme is stable.

This can be written mathematically as:

L̂u = f̂

u = L̂−1f̂

‖L−1‖∞ ≤ C

C : Is a constant that is independent of ∆x

Stability → matrix is not magnifying the RHS as we change ∆x

It turns out that (see MIT notes, pg 17 Lec 2&3), ‖L−1‖∞ is simply
the max row sum of L−1.

David J. Willis () Lecture 2b : FD Methods for Elliptic Equations: Error AnalysisFebruary 3, 2013 12 / 14



Convergence Analysis

Stability: Example

Let’s look at A−1 for the string problem. What is the maximum row
sum for different numbers of nodes?
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Convergence Analysis

Convergence – Page 18 MIT notes

This is a neat result, now that we know more about stability and
consistency:

e = L̂−1τ (10)

‖e‖∞ = ‖L̂−1τ‖∞ (11)

= ‖L̂−1‖∞‖τ‖∞ (12)

≤ C ·︸︷︷︸
Stability

∆xp︸︷︷︸
Consistency

(13)

You can also use eigenvalue analysis to examine convergence of
elliptic systems. This is not covered in this course.
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