
Module 1 : 22.520 Numerical Methods for PDEs :
Course Introduction

David J. Willis

January 23, 2013

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 1 / 37



References and Acknowledgements

The following materials were used in the preparation of this lecture:

1 16.920 Course notes and slides from MIT – Lecture 1

2 L.N. Treffethen and D.Bau III, Numerical Linear Algebra, SIAM.

3 G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge
Press.

The author of these slides wishes to thank these sources for helping with
the current lecture.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 2 / 37



Table of contents

1 Syllabus and Course Administration
Grading Scheme
Textbook
Schedule

2 Introducing Partial Differential Equations

3 Discussion about programming languages and hardware

4 Review of Vectors and Matrices
Vectors

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 3 / 37



Syllabus and Course Administration

Introductions

22.520 Numerical Methods for PDEs : Graduate & Seniors

Lecture: W: 5:00pm-6:15pm

Office hours:

Office: EB-322 (Perry Hall – 322)

Email: david willis@uml.edu

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 4 / 37



Syllabus and Course Administration

What is the purpose of this course?

This course is a combination of:

Mathematics, Engineering, & Computer science

Specifically, we will cover:

[FDM] Finite Difference Methods: Theory, Discretization, and
Numerical Solutions.
[FVM] Finite Volume Methods: Theory, Discretization, and Numerical
Solutions.
[FEM] Finite Element Methods: Theory, Discretization, and Numerical
Solutions.
[BEM] Boundary Integral Methods: Theory, Discretization, and
Numerical Solutions.

In the process, you will also learn about:

[SOL] Numerical methods for solving linear and nonlinear systems.
[GEO] Discrete Geometry Representation and Mesh Generation

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 5 / 37



Syllabus and Course Administration

Who should take this course?

ENGINEERS wanting to know useful math. MATHEMATICIANS wanting
to know useful application of the math. COMPUTER SCIENTISTS to
help us figure out the computer!
Knowing how to use computers to solve problems is a valuable skill in
modern engineering and associated fields. This course is particularly
valuable if:

If you are performing research that requires numerical algorithm
development

If you are using computational tools for your research/analysis

If you are interested in further developing your problem solving, logic
and engineering skills

If you are interested in approaches that allow you to solve complex
math problems using computers

If you want to be the computer’s boss! :-).

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 6 / 37



Syllabus and Course Administration Grading Scheme

Grades and Deliverables

60% 6-8 homework problems, each with a mandatory computer
programming component

40% A directed project in an application field (more soon)
Homework policy:

You are encouraged to discuss homework assignments, projects, class
concepts, and general programming together
You may not code/implement homework problems together.
Any computer code that is similar to other students’ will result in a
grade of zero.
All homeworks & projects will require matlab or another programming
language (matlab/C++/Fortran etc.)
Homework will be due on paper, code by email, by the due date on the
assignment.
Work hard, apply yourself to the challenge and you can get a great
grade

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 7 / 37



Syllabus and Course Administration Grading Scheme

Frequently Asked Questions

Questions?

Do I need to type my answers for questions that are not implemented
on a computer?

Do I need to type my project proposal and final report?

How do I hand in the portions of the homework that are implemented
on a computer?

Do I need to hand in color printouts of matlab (or other coding
language) results?

Can I ask for additional computer coding help?

Do I need to know matlab?

What if I know no programming languages?

How is this course diffferent than John White’s? MIT’s?

Will the lecture videos be available for students to watch?

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 8 / 37



Syllabus and Course Administration Textbook

Online Materials and Textbook(s)

MIT opencourseware : 16.920 (and 16.910)

http://ocw.mit.edu/

Suggestions for texts will appear as references in the lecture notes –
buy if you want, when you want.

Recordings of lectures TBD.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 9 / 37



Syllabus and Course Administration Schedule

Approximate Schedule

Introduction – today

Finite difference methods for elliptical, parabolic and hyperbolic
equations (4-5 weeks)

Finite volume methods for conservation laws (2-3 weeks)

Finite element methods (4-5 weeks)

Boundary element methods (whatever time is left at the end)

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 10 / 37



Syllabus and Course Administration Schedule

Questions?

Any questions...?

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 11 / 37



Syllabus and Course Administration Schedule

Table of contents

1 Syllabus and Course Administration
Grading Scheme
Textbook
Schedule

2 Introducing Partial Differential Equations

3 Discussion about programming languages and hardware

4 Review of Vectors and Matrices
Vectors

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 12 / 37



Introducing Partial Differential Equations

Example PDEs

PDE: A differential equation involving an unknown function(s) of
several variables and their partial derivatives w.r.t those variables.

Partial differential equations are convenient models of physical system
behavior – thus they are found everywhere in engineering and
mathematics A classical PDE is the convection diffusion equation:

∂u

∂t
+ U · ∇u = κ∇2u + f (1)

Where U, κ > 0, f are given functions in the space. U is typically a field
velocity, f is a source term and κ is a physical parameter related to the
physics of the problem.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 13 / 37



Introducing Partial Differential Equations

PDEs : The Convection-Diffusion Equation

∂u

∂t
+ U · ∇u = κ∇2u + f (2)

u = T (temperature) – this is the Heat Transfer Equation

u = P (polutant concentration) – Coastal/groundwater engineering

u = p (price of an option) – Financial Engineering

u = u (momentum per unit mass or velocity) – Navier Stokes
Equation

Obviously, the convection-diffusion equation is an important PDE.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 14 / 37



Introducing Partial Differential Equations

PDEs : The Convection-Diffusion Equation: DISCUSSION

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 15 / 37



Introducing Partial Differential Equations

PDEs : The Convection-Diffusion Equation: DISCUSSION

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 16 / 37



Introducing Partial Differential Equations

PDEs w/ Smooth Solutions

The Poisson Equation (Elliptic):

−κ∇2u = f (3)

Laplace’s Equation (Elliptic):

∇2u = 0 (4)

Heat conduction equation (Parabolic):

∂u

∂t
= κ∇2u + f (5)

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 17 / 37



Introducing Partial Differential Equations

PDEs w/ Smooth Solutions

The Poisson and Laplace’s Equations represent a wide variety of physical
problems:

Electrostatics and capacitance extraction

Potential flow

Torsion in a bar of constant cross section

Gravity driven viscous flow in a channel

Membrane deflection

Ground water flow

Stationary heat transfer

...

Why is Laplace’s/Poisson’s equation so common?

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 18 / 37



Introducing Partial Differential Equations

Laplace Operator

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 19 / 37



Introducing Partial Differential Equations

PDEs w/ Non-smooth Solutions

The 1st Order Wave Equation (Hyperbolic) – single direction of
propagation:

∂u

∂t
+ U · ∇u = 0 (6)

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 20 / 37



Introducing Partial Differential Equations

First Order Wave Equation

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 21 / 37



Introducing Partial Differential Equations

First Order Wave Equation

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 22 / 37



Introducing Partial Differential Equations

Additional Important PDEs : The Second Order Wave
Equation

The wave equation:
∂2u

∂t2
− c2∂

2u

∂x2
= 0 (7)

This equation describes the propagation of a wave through the domain
being considered (bi-directional).

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 23 / 37



Introducing Partial Differential Equations

PDEs : The KdV Equation

The KdV (Korteweg - de Vries) equation:

∂u

∂t
+
∂3u

∂x3
− 6u

∂u

∂x
= 0 (8)

Weakly non-linear, shallow water equation, optics signal propagation,
etc.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 24 / 37



Introducing Partial Differential Equations

PDEs : The KDV Equation

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 25 / 37



Introducing Partial Differential Equations

PDEs : The Hamilton-Jacobi equation and Eikonal
equation

The H-J equation:

∂u

∂t
+ F (x , y , z)‖∇u(x , y)‖ = 0 (9)

The Eikonal equation:

F (x , y , z) · ‖∇T (x , y)‖ = 1 (10)

Use heavily in level sets and path planning.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 26 / 37



Introducing Partial Differential Equations

PDEs : The Hamilton-Jacobi equation and Eikonal
equation

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 27 / 37



Introducing Partial Differential Equations

Boundary Conditions and Initial Values

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 28 / 37



Introducing Partial Differential Equations

Table of contents

1 Syllabus and Course Administration
Grading Scheme
Textbook
Schedule

2 Introducing Partial Differential Equations

3 Discussion about programming languages and hardware

4 Review of Vectors and Matrices
Vectors

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 29 / 37



Discussion about programming languages and hardware

Compiled vs. Interpreted Coding Languages

Computer programming languages are classified as:

Interpreted languages (eg. Matlab, Python, Octave, etc.)

Code is saved as written
Intructions are sequentially compiled as they are reached
Slow run-time
Fast to prototype and code (less errors)
Usually used for prototyping

Compiled languages (eg: C/C++/Fortran)

Code is converted to machine instructions and saved as an executable
Fast run-time → just need to run the instructions
Slower to prototype and code (more errors)
Usually used for production and released codes

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 30 / 37



Discussion about programming languages and hardware

Interpreted Coding Languages

Matlab is an interpreted language – designed for vector and matrix
algebra. Thus, there are ways to make matlab interpreted code more
efficient by making use of built in compiled functions.

Many of the matrix-matrix, matrix-vector, and vector-vector
operations are compiled.

Writing vectorized code is much more efficient than loop strucutres

example

Try the following:

Generate a 1000× 1000 matrix, A, and multiply it by a vector, b.

Use for loops in one case and use the ∗ operator in the other case

We can see that matlabs built-in operations are much better. Try to keep
for, while, etc. loops to a minimum.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 31 / 37



Discussion about programming languages and hardware

Interpreted Coding Languages–Octave

For those who are interested in a ’cheaper’ version of Matlab, octave is
very similar to matlab (identical but slower for most things):

http://www.gnu.org/software/octave/

Also, python is not a large departure from matlab and is gaining in
popularity.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 32 / 37



Discussion about programming languages and hardware

Discussion of computing hardware

CPU

GPU

RAM

HD

...

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 33 / 37



Discussion about programming languages and hardware

Table of contents

1 Syllabus and Course Administration
Grading Scheme
Textbook
Schedule

2 Introducing Partial Differential Equations

3 Discussion about programming languages and hardware

4 Review of Vectors and Matrices
Vectors

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 34 / 37



Review of Vectors and Matrices Vectors

Vectors

A vector, is single magnitude, single direction in a multi-dimensional space:

V =


V1

V2

:
Vn

 (11)

A vector can be used as one of several ’bases’ or ’supports’ for a given
space

A series of independent ’bases’ or ’supports’ can be scaled and added
to span the entire space.

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 35 / 37



Review of Vectors and Matrices Vectors

Vectors

A 2-D example:

A set of vectors that span the 2D space:

A set of vectors that do not span the 2D space:

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 36 / 37



Review of Vectors and Matrices Vectors

Dot Product or Innner Product

The dot product of two vectors (a, and b) is a common operation,
and is often called the inner − product, or < a · b >. The result of a
dot product is always a scalar.

For example, < a · b > can be written as:

dot_prod = 0;

for i = 1:length(a)

dot_prod = dot_prod + a(i)*b(i);

end

or:

dot_prod = a*b’; % this is using vectorization matlab

or:

dot_prod = dot(a,b); % this is using internal compiled code

David J. Willis () Module 1 : 22.520 Numerical Methods for PDEs : Course IntroductionJanuary 23, 2013 37 / 37


	Syllabus and Course Administration
	Grading Scheme
	Textbook
	Schedule

	Introducing Partial Differential Equations
	Discussion about programming languages and hardware
	Review of Vectors and Matrices 
	Vectors


