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Announcements

First homework posted online this week.
ECHO360 Lecture capture.

Permission numbers — refresh today, come see me after class.

Project description — hopefully posted Thursday evening.
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Announcements and Course Administration

References and Acknowledgements

The following materials were used in the preparation of this lecture:

© Tannehill, Anderson and Pletcher, Computational fluid Mechanics and
Heat Transfer.

@ 16.920 Notes

The author of these slides wishes to thank these sources for making the
current lecture.
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How to solve a simple PDE using a computer

o Consider the 1-D Poisson Equation (ODE) between x = 0 and x = 1:

Viu = gi‘; =f=1 (1)
ux=0) = 0 (2)
ux=1) = 0 (3)

@ For this problem, we are going to assume that u represents the
deflection of a string, and f represents some applied transverse force.
@ Discuss with your neighbor(s):
@ What is the actual/real solution to this problem?
@ How can you going to represent the solution u, using a computer code?
© How can you represent the geometry/domain in the computer code?
© How can you represent the governing ODE in the computer?
© Does the solution at a given location depend on the neighboring
solutions?
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The Exact Solution
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Solution Representation

@ We will see in this course that there are two ways to numerically
represent a solution:

© Pointwise
@ Functional
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Pointwise

David
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Functional

David
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Geometry Representation

o We will initially use point-wise representation of the solution.

e Setup the points where the solution is to be determined —
discretization or mesh.
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Solution Representation

@ The solution representation and solution method can have a direct
impact on geometry representation in the computer.
@ Even if the solution is needed at one location (max deflection), we
usually need to solve the problem where dependency exists:
o Elliptic
e Parabolic
e Hyperbolic
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Solution Representation

@ This sub-module: Elliptic equations — smooth solutions, infinite
domain of influence and dependence.
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ Let’s say we wish to approximate a derivative:

du
Ix (4)

@ How can we approximate this derivative?
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ Fundamental definition of the derivative:

o Take the value for u at two different x— locations, and simply take the
difference between the u-value and divide by the spatial distance
(difference in the x-locations.

du ~ Ut T + error (5)
dx  Xiy1 — X
o As the two points get closer together, the error diminishes.
o In the limit as the two points approach each other, we recover the
derivative.
o How accurate is this approximation? As (x;41 — x;) — 07
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ The idea is to approximate derivatives using finite not infinitesimal
differences in the variables.

@ To make this a viable method, we need to:
e GOAL # 1: Come up with a way to represent a diversity of
derivatives, eg:
8%u
x2
3u
a3
o GOAL # 2: Quantify and reduce the error of the approximation —
better solution.
o GOAL # 3: Develop expressions and solutions to PDEs using these

derivatives.
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Introduction to Finite Differences — Taylor Series Expansions

Mathematics: Taylor Series Expansion

o GOAL #1, Method 1: Taylor Series Expansion in positive
x-direction:

0
u(xo +Ax) = u(xo)—l—a—i\oAx—l—
e
ox2% 2l
0"u, (Ax)"
* 8X”‘0 n!
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Introduction to Finite Differences — Taylor Series Expansions

Geometry and Mathematics of the Taylor Series Expansion
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Introduction to Finite Differences — Taylor Series Expansions

Mathematics: Taylor Series Expansion

@ Taylor Series Expansions in negative x-direction:

ou
u(xp — Ax) = u(xg) — —|olAx
(xo ) (x0) = 5 lodx +
n 82u| (Ax)?
9x2'° 2l
0"u, (Ax)"
b, B
oxn n!
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Introduction to Finite Differences — Taylor Series Expansions

Mathematics: Taylor Series Expansion
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

o If we start with:

)
u(xo + Ax) = u(xo)—l—a—;lHoAx-i-

0%u, (Ax)?
oo
0"u, (Ax)"

%HO n!

+ ..

+ ..
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ We can re-arrange the equation so that:

8uH _ (u(x0) — u(xo + Ax))
0 Ax
8%u AX)2
+ ax2 110" o1 H +
Ax
2”“\\
Xn
+ AX + ...

David J. Willis () Module 2a: Introduction to Finite Difference January 28, 2013 23 / 50



Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ This gives us:
(u(x0) — u(xo + Ax))
Ax

2o = +0(ax) (6)

@ Comment: The error decays proportionally to decreases in Ax
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

o If we start with:

0
ulxo — Ax) = u(x) — —UHOAX +
0%u (AX)
* x2HO 21
0"u, (Ax
T ] N A

@ We can re-arrange the equation so that:

ou (o)~ el — X))
ox"° Ax
82121 H AX)2
ox21v 2l
+ Ax
5 uo‘AX)"
—1)ni nt
+ (D)
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ This gives us:
(u(x0) — ulx0 — Ax))
Ax

ou
o= +0(8x)

@ Comment: The error again decays proportionally to decreases in Ax
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

o If we start with:
ou
ulxo — Ax) = u(x) — aHOAX +

0%u, (Ax)?
T el

,0"u . (Ax)"
by,

+ ..

n!
@ And subtract the expression:

)
u(xo + Ax) = u(xo)+§|yoax+

0%u, (Ax)?
LTI
0"u, (Ax)"
%HO nl
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@H _u(xo + Ax) — u(xp — Ax) N
ox'"0 2Ax
4 E@H (Ax)* +
203" 3 T

@ This is a more accurate approximation to the first derivative
@ As we reduce the spacing between points by factor of 2, the error in
the derivative changes by a factor of 4
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives
@ Let's define a system that uses i/ (and j) indices to indicate our

position on a grid.
@ The spatial difference between i-points is Ax.
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Introduction to Finite Differences — Taylor Series Expansions

Finite Difference Approximations to Derivatives

@ Let’s look at a couple of common first derivative finite difference
approximations:

du  ujy1 — uj

o=+ 0(ax) (7)

% = 4+ 0(A%) (8)

% _ ui+12;;/i—1 n O(sz) 9)

% _ Suj — 4;1,-A_)1<+ Uj_o n O(sz) (10)
% _ it 2‘&1 — 2 L o(ax?) (11)
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Introduction to Finite Differences — Taylor Serie

% — U,+1—U, + O(AX)

David
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Introduction to Finite Differences — Taylor Serie

& — 4ot | O(Ax)

David
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Introduction to Finite Differences — Taylor Serie

& = “ame + 0(8x)

David
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Introduction to Finite Differences — Taylor Serie

du __ 3ui—4ui_1+uj_s 2

David
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Introduction to Finite Differences — Taylor Series Expansions
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Example: Transverse deflection of a string under a distributed load

Thought Experiment

@ The deflection of a 1-D string.
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Example: Transverse deflection of a string under a distributed load

Thought Experiment

@ Now that we have a governing equation, let's determine how to solve
it using Finite Differences:

22— f(x) (12)

@ With boundary conditions on both ends of:
up = ur = 0 (13)

@ How do we solve this?
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Example: Transverse deflection of a string under a distributed load

Thought Experiment

@ Step 1: Discretize the domain into n intervals (n+ 1 points).

@ Step 2: Write finite difference equations for each internal node of the
problem

@ Step 3: Form a system of linear equations

@ Step 4: Enforce the boundary conditions for the end points

@ Step 5: Solve the system of equations
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ample: Transverse deflection of a string under a distributed load
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Method of Lagrange Interpolation to Find FD Formulae

@ Method 2: for finding finite difference formula is Lagrange
Interpolation. This is a more rigorous approach.

@ When deriving new finite difference formula, we want to find an
approximation of the form:

right
dxm ~ N oy (14)

Jj=—left

@ We need a way to find the values of the coefficients: 6}"
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Method of Lagrange Interpolation to Find FD Formulae

@ Example of this notation: The first derivative
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Method of Lagrange Interpolation to Find FD Formulae
@ Start by defining a Lagrange Polynomial:

() = (x = x1) .o (x = xj—1) (X = Xj31)---(x — xr)
B = G )y )05 )G ) )

@ The values for the above equation are 1 when x = x; and 0 when
Xi # X;.
@ Here, x; is a node other than x;
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Method of Lagrange Interpolation to Find FD Formulae

@ We can approximate the solution by adding the appropriate
combinations of Lagrange Polynomials together:
right

0(x)= Y LX)y (16)

Jj=—left
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Method of Lagrange Interpolation to Find FD Formulae

@ Rather than the solution &I, we want to represent the derivatives, z:,i,’

up to order m.

dmu _ d™a e gmy
de - dx m’X X0 — Z TJ’X XOUJ (17)
Jj=—left

@ What this means, is that the coefficients 5;" that we wish to find are

simply (by pattern matching):
d™L;

5Jm = dx™ |>< X0 (18)
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1
Let's Try An Example

@ Here we will look for the finite difference equations that are based on

a 3-point polynomial.

@ Start first by expressing the solution as:

0(x) = Y LX)y

j=—1
G G T N
(-1 = %) (-1 = xj41) 7~

(x = x-1)(x = xj41)

- (x = xj-1) (x5 = Xj41)
(x—x-1)x—x)
T G )0y — ) T
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Introduction to Finite Differences — Lagrange Interpolation

Let's Try An Example

o To find the finite difference equation coefficients (the 61"):

@ It helps to first expand the polynomial in each numerator

@ Differentiate the various Lagrangian polynomials with respect to x

© Depending upon where the finite difference is centered, insert the
appropriate x entry

© Simplify the expression to get the value for 0/ in terms of Ax
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1
Let's Try An Example

o Start with the term ;" ,, where the finite difference is centered at
Xj—1-

g L x=g)x =)
Li1(x) = (xj—1 — X)) (Xj—1 — Xj+1)

(x* = %06 — %G41 + X%j+1)

L',l X =
i-1(x) (-1 = %) (Xj—1 — Xj+1)
dlja(x) _ (2x = X — Xj41)
dx (Xj—1 = %) (Xj-1 — Xj+1)
—3Ax -3
Falx=x-1) = 87 = 5ax
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1
Let's Try An Example

o Similarly, for Largange polynomials centered at different x points, we
can find the following expressions when x = x;_1:

-3

gm. o= 2

-1 2Ax
smo- 2 _ 4
J Ax  2Ax

m B -1

41T oAx

@ See the example sheet for derivations of the other terms and other
finite difference expressions.
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1
Let's Try An Example

@ The result is:

du
dx
-3

~ T

—3Uj + 4Uj+1 — Uj12

—— = 6 qui+ 0 ujr1 + 61 Uj2

Ax

2AXx

@ We have derived the equation for the one sided first derivative.

@ Note: We had 3-points, and as such we represented the solution using

a polynomial of order 2.

@ The error in the first derivative is therefore second order (O(Ax?)).
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1
Let's Try An Example

@ Applying the same approach, we can find many other finite difference
formulas.
@ One formula of particular interest is the second derivative, central
difference formula:
d?u Uiy — 2ui + uj—1
dx? ~ Ax?

+ O(h?)
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