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Announcements and Course Administration

Announcements

First homework posted online this week.

ECHO360 Lecture capture.

Permission numbers – refresh today, come see me after class.

Project description – hopefully posted Thursday evening.
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Announcements and Course Administration

References and Acknowledgements

The following materials were used in the preparation of this lecture:

1 Tannehill, Anderson and Pletcher, Computational fluid Mechanics and
Heat Transfer.

2 16.920 Notes

The author of these slides wishes to thank these sources for making the
current lecture.
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Example PDE

How to solve a simple PDE using a computer

Consider the 1-D Poisson Equation (ODE) between x = 0 and x = 1:

∇2u =
∂2u

∂x2
= f = 1 (1)

u(x = 0) = 0 (2)

u(x = 1) = 0 (3)

For this problem, we are going to assume that u represents the
deflection of a string, and f represents some applied transverse force.

Discuss with your neighbor(s):
1 What is the actual/real solution to this problem?
2 How can you going to represent the solution u, using a computer code?
3 How can you represent the geometry/domain in the computer code?
4 How can you represent the governing ODE in the computer?
5 Does the solution at a given location depend on the neighboring

solutions?
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Example PDE

The Exact Solution
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Example PDE

Solution Representation

We will see in this course that there are two ways to numerically
represent a solution:

1 Pointwise
2 Functional
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Example PDE

Pointwise
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Example PDE

Functional
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Example PDE

Geometry Representation

We will initially use point-wise representation of the solution.

Setup the points where the solution is to be determined →
discretization or mesh.
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Example PDE

Solution Representation

The solution representation and solution method can have a direct
impact on geometry representation in the computer.

Even if the solution is needed at one location (max deflection), we
usually need to solve the problem where dependency exists:

Elliptic
Parabolic
Hyperbolic
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Example PDE

Solution Representation

This sub-module: Elliptic equations → smooth solutions, infinite
domain of influence and dependence.
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Example PDE
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

Let’s say we wish to approximate a derivative:
du

dx
(4)

How can we approximate this derivative?
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

Fundamental definition of the derivative:
Take the value for u at two different x− locations, and simply take the
difference between the u-value and divide by the spatial distance
(difference in the x-locations.

du

dx
' ui+1 − ui

xi+1 − xi
+ error (5)

As the two points get closer together, the error diminishes.
In the limit as the two points approach each other, we recover the
derivative.
How accurate is this approximation? As (xi+1 − xi )→ 0?
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

The idea is to approximate derivatives using finite not infinitesimal
differences in the variables.

To make this a viable method, we need to:
GOAL # 1: Come up with a way to represent a diversity of
derivatives, eg:

∂2u
∂x2

∂3u
∂x3

GOAL # 2: Quantify and reduce the error of the approximation →
better solution.
GOAL # 3: Develop expressions and solutions to PDEs using these
derivatives.
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Introduction to Finite Differences – Taylor Series Expansions

Mathematics: Taylor Series Expansion

GOAL #1, Method 1: Taylor Series Expansion in positive
x-direction:

u(x0 + ∆x) = u(x0) +
∂u

∂x
|0∆x +

+
∂2u

∂x2
|0

(∆x)2

2!
+ ...

+
∂nu

∂xn
|0

(∆x)n

n!
+ ...
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Introduction to Finite Differences – Taylor Series Expansions

Geometry and Mathematics of the Taylor Series Expansion
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Introduction to Finite Differences – Taylor Series Expansions

Mathematics: Taylor Series Expansion

Taylor Series Expansions in negative x-direction:

u(x0 −∆x) = u(x0)− ∂u

∂x
|0∆x +

+
∂2u

∂x2
|0

(∆x)2

2!
− ...

+ (−1)n ∂
nu

∂xn
|0

(∆x)n

n!
+ ...
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Introduction to Finite Differences – Taylor Series Expansions

Mathematics: Taylor Series Expansion
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

If we start with:

u(x0 + ∆x) = u(x0) +
∂u

∂x
‖0∆x +

+
∂2u

∂x2
‖0

(∆x)2

2!
+ ...

+
∂nu

∂xn
‖0

(∆x)n

n!
+ ...
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

We can re-arrange the equation so that:

∂u

∂x
‖0 =

(u(x0)− u(x0 + ∆x))

∆x
+

+
∂2u
∂x2 ‖0

(∆x)2

2!

∆x
+ ...

+
∂nu
∂xn ‖0

(∆x)n

n!

∆x
+ ...
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

This gives us:

∂u

∂x
‖0 =

(u(x0)− u(x0 + ∆x))

∆x
+ O(∆x) (6)

Comment: The error decays proportionally to decreases in ∆x
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

If we start with:

u(x0 −∆x) = u(x0)− ∂u

∂x
‖0∆x +

+
∂2u

∂x2
‖0

(∆x)2

2!
− ...

+ (−1)n ∂
nu

∂xn
‖0

(∆x)n

n!
+ ...

We can re-arrange the equation so that:

∂u

∂x
‖0 =

(u(x0)− u(x0 −∆x))

∆x
+

+
∂2u
∂x2 ‖0

(∆x)2

2!

∆x
− ...

+ (−1)n
∂nu
∂xn ‖0

(∆x)n

n!

∆x
+ ...
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

This gives us:

∂u

∂x
‖0 =

(u(x0)− u(x0 −∆x))

∆x
+ O(∆x)

Comment: The error again decays proportionally to decreases in ∆x
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

If we start with:

u(x0 −∆x) = u(x0)− ∂u

∂x
‖0∆x +

+
∂2u

∂x2
‖0

(∆x)2

2!
− ...

+ (−1)n ∂
nu

∂xn
‖0

(∆x)n

n!
+ ...

And subtract the expression:

u(x0 + ∆x) = u(x0) +
∂u

∂x
‖0∆x +

+
∂2u

∂x2
‖0

(∆x)2

2! .
..

+
∂nu

∂xn
‖0

(∆x)n

n!
+ ...
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

∂u

∂x
‖0 =

u(x0 + ∆x)− u(x0 −∆x)

2∆x
+

+
1

2

∂3u

∂x3
‖0

(∆x)2

3!
+ ...

This is a more accurate approximation to the first derivative
As we reduce the spacing between points by factor of 2, the error in
the derivative changes by a factor of 4
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

Let’s define a system that uses i (and j) indices to indicate our
position on a grid.
The spatial difference between i-points is ∆x .
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Introduction to Finite Differences – Taylor Series Expansions

Finite Difference Approximations to Derivatives

Let’s look at a couple of common first derivative finite difference
approximations:

du

dx
=

ui+1 − ui

∆x
+ O(∆x) (7)

du

dx
=

ui − ui−1

∆x
+ O(∆x) (8)

du

dx
=

ui+1 − ui−1

2∆x
+ O(∆x2) (9)

du

dx
=

3ui − 4ui−1 + ui−2

2∆x
+ O(∆x2) (10)

du

dx
=
−3ui + 4ui+1 − ui+2

2∆x
+ O(∆x2) (11)
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Introduction to Finite Differences – Taylor Series Expansions

du
dx = ui+1−ui

∆x + O(∆x)
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Introduction to Finite Differences – Taylor Series Expansions

du
dx = ui−ui−1

∆x + O(∆x)
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Introduction to Finite Differences – Taylor Series Expansions

du
dx = ui+1−ui−1

2∆x + O(∆x2)
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Introduction to Finite Differences – Taylor Series Expansions

du
dx = 3ui−4ui−1+ui−2

2∆x + O(∆x2)
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Introduction to Finite Differences – Taylor Series Expansions
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Example: Transverse deflection of a string under a distributed load

Thought Experiment

The deflection of a 1-D string.
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Example: Transverse deflection of a string under a distributed load

Thought Experiment

Now that we have a governing equation, let’s determine how to solve
it using Finite Differences:

∂2u

∂x2
= f (x) (12)

With boundary conditions on both ends of:

uL = uR = 0 (13)

How do we solve this?
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Example: Transverse deflection of a string under a distributed load

Thought Experiment

Step 1: Discretize the domain into n intervals (n + 1 points).

Step 2: Write finite difference equations for each internal node of the
problem

Step 3: Form a system of linear equations

Step 4: Enforce the boundary conditions for the end points

Step 5: Solve the system of equations
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Example: Transverse deflection of a string under a distributed load
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Introduction to Finite Differences – Lagrange Interpolation

Method of Lagrange Interpolation to Find FD Formulae

Method 2: for finding finite difference formula is Lagrange
Interpolation. This is a more rigorous approach.

When deriving new finite difference formula, we want to find an
approximation of the form:

dmu

dxm
'

right∑
j=−left

δm
j uj (14)

We need a way to find the values of the coefficients: δm
j
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Introduction to Finite Differences – Lagrange Interpolation

Method of Lagrange Interpolation to Find FD Formulae

Example of this notation: The first derivative
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Introduction to Finite Differences – Lagrange Interpolation

Method of Lagrange Interpolation to Find FD Formulae

Start by defining a Lagrange Polynomial:

Lj (x) =
(x − xl )...(x − xj−1)(x − xj+1)...(x − xr )

(xj − xl )...(xj − xj−1)(xj − xj+1)...(xj − xr )
(15)

The values for the above equation are 1 when x = xj and 0 when
xi 6= xj .
Here, xi is a node other than xj
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Introduction to Finite Differences – Lagrange Interpolation

Method of Lagrange Interpolation to Find FD Formulae

We can approximate the solution by adding the appropriate
combinations of Lagrange Polynomials together:

û(x) =

right∑
j=−left

Lj (x)uj (16)
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Introduction to Finite Differences – Lagrange Interpolation

Method of Lagrange Interpolation to Find FD Formulae

Rather than the solution û, we want to represent the derivatives, dmu
dxm

up to order m.

dmu

dxm
' dmû

dxm
|x=x0 =

right∑
j=−left

dmLj

dxm
|x=x0uj (17)

What this means, is that the coefficients δm
j that we wish to find are

simply (by pattern matching):

δm
j =

dmLj

dxm
|x=x0 (18)
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Introduction to Finite Differences – Lagrange Interpolation

Let’s Try An Example

Here we will look for the finite difference equations that are based on
a 3-point polynomial.

Start first by expressing the solution as:

û(x) =
r∑

j=−l

Lj (x)uj

=
(x − xj )(x − xj+1)

(xj−1 − xj )(xj−1 − xj+1)
uj−1

+
(x − xj−1)(x − xj+1)

(xj − xj−1)(xj − xj+1)
uj

+
(x − xj−1)(x − xj )

(xj+1 − xj−1)(xj+1 − xj )
uj+1
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Introduction to Finite Differences – Lagrange Interpolation

Let’s Try An Example

To find the finite difference equation coefficients (the δm
j ):

1 It helps to first expand the polynomial in each numerator
2 Differentiate the various Lagrangian polynomials with respect to x
3 Depending upon where the finite difference is centered, insert the

appropriate x entry
4 Simplify the expression to get the value for δm

j in terms of ∆x
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Introduction to Finite Differences – Lagrange Interpolation

Let’s Try An Example

Start with the term δm
j−1, where the finite difference is centered at

xj−1:

Lj−1(x) =
(x − xj )(x − xj+1)

(xj−1 − xj )(xj−1 − xj+1)

Lj−1(x) =
(x2 − xxj − xxj+1 + xj xj+1)

(xj−1 − xj )(xj−1 − xj+1)

dLj−1(x)

dx
=

(2x − xj − xj+1)

(xj−1 − xj )(xj−1 − xj+1)

δm
j−1(x = xj−1) =

−3∆x

2∆x2
=
−3

2∆x
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Introduction to Finite Differences – Lagrange Interpolation

Let’s Try An Example

Similarly, for Largange polynomials centered at different x points, we
can find the following expressions when x = xj−1:

δm
j−1 =

−3

2∆x

δm
j =

2

∆x
=

4

2∆x

δm
j+1 =

−1

2∆x

See the example sheet for derivations of the other terms and other
finite difference expressions.
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Introduction to Finite Differences – Lagrange Interpolation

Let’s Try An Example

The result is:

du

dx
= δm

j−1uj + δm
j uj+1 + δm

j+1uj+2

=
−3

2∆x
uj +

2

∆x
uj+1 +

−1

2∆x
uj+2

=
−3uj + 4uj+1 − uj+2

2∆x

We have derived the equation for the one sided first derivative.

Note: We had 3-points, and as such we represented the solution using
a polynomial of order 2.

The error in the first derivative is therefore second order (O(∆x2)).
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Introduction to Finite Differences – Lagrange Interpolation

Let’s Try An Example

Applying the same approach, we can find many other finite difference
formulas.
One formula of particular interest is the second derivative, central
difference formula:

d2u

dx2
' ui+1 − 2ui + ui−1

∆x2
+ O(h2)
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